The following warnings occurred:
Warning [2] Undefined variable $myalerts_js - Line: 5 - File: inc/plugins/whorefer.php(127) : eval()'d code PHP 8.1.2-1ubuntu2.14 (Linux)
File Line Function
/inc/class_error.php 153 errorHandler->error
/inc/plugins/whorefer.php(127) : eval()'d code 5 errorHandler->error_callback
/inc/plugins/whorefer.php 127 eval
/inc/class_plugins.php 142 whorefer
/member.php 2849 pluginSystem->run_hooks
Warning [2] Undefined variable $myalerts_modal - Line: 5 - File: inc/plugins/whorefer.php(127) : eval()'d code PHP 8.1.2-1ubuntu2.14 (Linux)
File Line Function
/inc/class_error.php 153 errorHandler->error
/inc/plugins/whorefer.php(127) : eval()'d code 5 errorHandler->error_callback
/inc/plugins/whorefer.php 127 eval
/inc/class_plugins.php 142 whorefer
/member.php 2849 pluginSystem->run_hooks




Forum Info

Joined:
09-07-2021
Status:
Offline
Last Visit:
09-07-2021, 08:11 AM
Time Spent Online:
10 Minutes, 12 Seconds

Additional Info

DOB:
02-18-1988 (36 years old)
Bio:
Precision injection molding of high performance components requires primary error sources affected the molded component to be identified and isolated such that these errors can be reduced if needed. To systematically isolate and quantify the contribution of misalignment, thermal variation and component warpage to the accumulated error observed on the component, a methodology is presented and tested around an existing mold which produced parts with high dimensional variability. The mold featured two concentric guide pillars on opposite sides of the parting plane and rectangular centering block elements at three locations. Mold displacements at the parting plane were measured through the incorporation of three eddy-current linear displacement sensors. Thermal error sensitivity was investigated using FEM simulations such that the induced variability from thermal expansion and filling phase was identified and quantified. Finally, molded component warpage was isolated and quantified, again by the means of FEM simulation. The results were confirmed by using the mold on two injection molding machines to produce an array of parts whose key dimensions were measured.


Micro/nanostructured components play an important role in micro-optics and optical engineering, tribology and surface engineering, and biological and biomedical engineering, among other fields. Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components, the premise of which is meld manufacturing with complementary micro/nanostructures. Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications. Moreover, the service performance of the mold should also be carefully considered. This paper reviews a variety of technologies for manufacturing micro/nanostructured molds. The authors begin with an introduction of the extreme requirements of mold materials. The following section provides a detailed survey of the existing micro/nanostructured automotive mold components manufacturing techniques and their corresponding mold materials, including fixtures and mechanical parts methods. This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus (Ni-P) mold manufacturing and its service performance.
Sex:
Undisclosed
Total Posts:
0 (0 posts per day | 0 percent of total posts)
Total Threads:
0 (0 threads per day | 0 percent of total threads)
Members Referred:
0

Ratings

Here's what users think of ttyu0907

Signature

Contact

Homepage: https://www.dgmoldcraft.com/